RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. FOURTH SEMESTER EXAMINATION, MAY-JUNE 2013

SECOND YEAR

Date : 20/5/2013 Time : 11 am – 3 pm **MATHEMATICS** (Honours) Paper : IV

Full Marks: 100

[2+5]

[2+3+2]

[Use separate Answer Books for each group]

Group – A

Answer <u>any five</u> questions from <u>Q. No. 1-8</u> and <u>any three</u> questions from <u>Q. No. 9-13</u> :

- a) Let (X,d) be a metric space such that $BdA = \phi \forall A \subseteq X$. What can you say about $\tau(d)$, the topology 1. induced by d?
 - b) Let G be a noncyclic subgroup of (\mathbb{R} ,+). Prove that G is dense in \mathbb{R} .
- a) Prove that is separable metric space is 2^{nd} countable. 2.
 - b) Assume that \mathbb{R} with Euclidean metrice is Lindolöff. Prove that a subset of \mathbb{R} which has no limit point is atmost countable. [4+3]
- a) Let $\{x_n\}$ be a Cauchy sequence in a metric space (X,d). Prove that if $\{x_n\}$ has a convergent 3. subsequence then $\{x_n\}$ is convergent.
 - b) Prove that A is compact in (X,d) implies A is closed and bounded. Give an example to show that a closed and bounded subset in a metric space may not be compact. [3+4]
- Let $A_1 \supseteq A_2 \supseteq ... A_n \supseteq A_{n+1} \supseteq ...$ be a decreasing sequence of closed subsets of a metric space (X,d). 4.
 - a) Is $\bigcap_{n=1} A_n \neq \phi$? Justify your answer.
 - b) Show that if $(X,d) = (\mathbb{R},d_n)$ where d_n is the Euclidean metric on \mathbb{R} and $d(A_n) \to 0$ as $n \to \infty$ then

$$\bigcap_{n=1}^{\infty} A_n \neq \phi$$

c) Prove that if (X,d) is compact then $\bigcap_{n=1}^{\infty} A_n \neq \phi$.

- a) State and prove Baire's Category theorem. 5.
 - b) Use Baire's Category theorem to prove that \mathbb{R}^2 can't be expressed as a countable union of straight lines in \mathbb{R}^2 . [5+2]
- 6. a) If A, B are two disjoint closed subsets of a metric space (X,d), prove that there exists a continuous function $f: X \rightarrow R$ with $f(A) = \{0\}$, $f(B) = \{1\}$ and $0 \le f(x) \le 1$ for all $x \in X$.
 - b) Let $f,g:(X,d) \rightarrow (Y,d')$ be two continuous maps. Prove that $\{x \in X : f(x) = g(x)\}$ is a closed subset of X.

Hence prove that if $f:(X,d) \rightarrow (X,d)$ is continuous then $\{x \in X : f(x) = x\}$ is closed in X. [3+4]

- 7. a) Prove that a totally bounded metric space is bounded.
 - b) Show that a metric space (X,d) is totally bounded iff every sequence in X has a Cauchy subsequence. [2+5]
- a) Prove that a continuous image of a connected metric space is connected. 8. Use the above result to show that a connected metric space with atleast two distinct points is uncountable. [4+3]
 - b) Prove that a connected subgroup of $(\mathbb{R}, +)$ is either $\{0\}$ or \mathbb{R} .
- a) Let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of real valued continuous functions on $E \subset \mathbb{R}$ converging uniformly to a 9. function f over E. Prove that f is continuous on E.

b) Show that the sequence $\{f_n\}_{n \in \mathbb{N}}$ where $f_n(x) = \frac{x^n}{1+x^n}$, $x \in [0,2]$ is not uniformly convergent over [0,2] [3+2]

10. Let D be a compact subset of \mathbb{R} and $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of continuous functions on D to \mathbb{R} , that converges pointwise to a continuous f on D. If the sequence $\{f_n\}_{n\in\mathbb{N}}$ is monotone of D, then prove that it converges uniformly on D to f. [5]

11. Let D be a subset of \mathbb{R} and a series of functions $\sum_{n=1}^{\infty} f_n$ be uniformly convergent on D to a function f. Let x be a limit point of D and $\lim_{t\to x} f_n(t) = A_n$, n = 1, 2, 3, ... Prove that—

i) the series $\sum_{n=1}^{\infty} A_n$ is convergent and

ii)
$$\lim_{t \to x} f(t)$$
 exists and $\lim_{t \to x} f(t) = \sum_{n=1}^{\infty} A_n$.

12. Show that the series of functions $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly over \mathbb{R} , here $f_n(x) = \frac{\sin nx}{n^2}$. Does $\sum_{n=1}^{\infty} f'_n(x)$ converge? Justify your answer. [3+2]

[5]

$$\sum_{n=1}^{\infty} f'_n(x) \text{ converge? Justify your answer.}$$

- 13. a) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{x^n}{1+x^n}$: $x \ge 0$.
 - b) Find the radius of convergence of the power series $x + \frac{2^{\alpha}}{2!}x + \frac{3^{\alpha}}{3!}x^2 + ...$ for $\alpha > 0$. [3+2]

<u>Group – B</u>

Answer any three questions from **<u>Q. No. 14-18</u>** and any four questions from **<u>Q. No. 19-24</u>** :

14. a) Find the eigen-values and the corresponding eigenfunctions of $\frac{d^2y}{dx^2} + \lambda y = 0$ ($\lambda > 0$) under boundary conditions y(0) + y'(0) = 0 and y(1) + y'(1) = 0. [5]

b) Solve
$$\frac{d^2y}{dx^2} - 4x\frac{dy}{dx} + (4x^2 - 1)y = -3e^{x^2}\sin 2x$$
 by reducing to normal form. [5]

15. a) Solve the following differential equation using Laplace transform

$$\frac{d^2y}{dt^2} - 3\frac{dy}{dt} + 2y = 4e^{2t}, \text{ given } y(0) = -3 \text{ and } y'(0) = 5.$$
[5]

b) Knowing that y = x is a solution of the equation $x^2 \frac{d^2y}{dx^2} - x(x+2)\frac{dy}{dx} + (x+2)y = 0$ reduce the

equation
$$x^2 \frac{d^2 y}{dx^2} - x(x+2)\frac{dy}{dx} + (x+2)y = x^3$$
 to a differential equation of 1st order and 1st degree
and find its complete primitive. [5]

- 16. a) Find the integral surface of the linear partial differential equation $x(y^2+z)p-y(x^2+z)q = (x^2-y^2)z$ which contains the straight line x + y = 0, z = 1. [5]
 - b) Solve the equation $\frac{d^2y}{dx^2} + (x-1)^2 \frac{dy}{dx} 4(x-1)y = 0$ in series about the ordinary point x = 1. [5]

17. a) Find a complete integral of the partial differential equation $(p^2 + q^2)y = qz$, using Charpit's method. [5]

b) Solve
$$(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$$
 by Lagrange's Method $\left(p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}\right)$. [5]

18. a) Use convolution theorem to show that $L^{-1}\left\{\frac{1}{(p+2)^2(p-2)}\right\} = \frac{1}{16}\left(e^{2t} - 4te^{-2t} - e^{-2t}\right)$ where L^{-1} is inverse Laplace transformation. [3]

b) If F(t) be a periodic function with period T(>0) then show that $L{F(t)} = \frac{\int_{0}^{T} e^{-pt} F(t) dt}{1 - e^{-pT}}$ where L represents Laplace transform operator. [4]

c) Form a partial differential equation by eliminating the arbitrary functions f and g from z = yf(x) + xg(y) [3]

19. If $I_n = \int_{0}^{\frac{\pi}{2}} x^n \sin x \, dx$, n being a positive integer > 1, show that $I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$. Hence find the value of $\int_{0}^{\frac{\pi}{2}} x^5 \sin x \, dx$. [5]

- 20. Show that the pedal equation of $e^2(x^2 + y^2) = x^2y^2$ w.r. to the origin is $\frac{1}{p^2} + \frac{3}{r^2} = \frac{1}{c^2}$. [5]
- 21. Find the envelope of the family of ellipses $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. where the parameters a and b are connected by $a^2 = b^2$

a relation
$$\frac{a}{\ell^2} + \frac{b}{m^2} = 1$$
, ℓ and m are non-zero constants. [5]

- 22. Find the radius of curvature at the origin of the curve $4x^4 + 3y^3 8x^2y + 2x^2 3xy 6y^2 8y = 0$. [5]
- 23. Find the existence of double point, if any, of the curve $y^2(a^2 + x^2) = x^2(a^2 x^2)$. If so, find its nature. [5]
- 24. State Pappus theorem on the volume of a solid of revolution and use it to find the volume of the solid generated by revolving the ellipse $x = a \cos \theta$, $y = b \sin \theta$ about the line x = 2a. [5]

80參Q3